2.2 Problem Solving: Skills and Approach

Dr. Tarek A. Tutunji Philadelphia University, Jordan

Preview

 In the previous sequence, problem solving was defined as a process and problems were divided into different classes.

• In this sequence, *problem solving* skills and approach will be presented.

Problem Solving Skills

- Knowledge.
 - Gained during engineering education.
- Experience.
 - Gained through practical work.
- Learning.
 - Ongoing as new problems require continuous learning.
- Motivation.
 - It is vital for engineers to enjoy their work and be inspired to resolve problems
- Communication.
 - An essential skill that is needed for team work.

Skilled vs. Unskilled Problem Solvers

- Skilled problem solvers differ from unskilled problem solvers in many areas:
 - Approach
 - Knowledge
 - Attack
 - Logic
 - Analysis
 - Perspective

Approach

 Unskilled problem solver is easily discouraged and careless.

- Skilled problem solver is
 - Motivated
 - Persistent
 - Confident
 - Careful.

Knowledge

- Unskilled problem solver does not understand the problem requirements.
- Skilled problem solver
 - Understands the requirements
 - Understands the facts

Attack

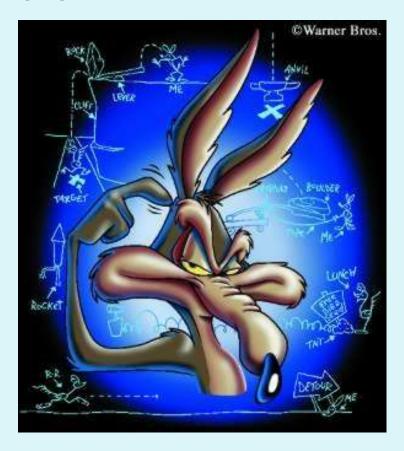
- Unskilled problem solver tries to calculate the answer right away.
- Skilled problem solver breaks the problem into pieces.

Logic

- Unskilled problem solver uses guesses and jumps to conclusions quickly.
- Skilled problem solver
 - Uses basic principles.
 - Works logically from step to step.

Analysis

 Unskilled problem solver is uncertain and jumps to unfounded conclusions.


- Skilled problem solver
 - Is organized.
 - Thinks carefully.

Perspective

- Unskilled problem solver can not estimate the answer.
- Skilled problem solver
 - Can estimate the answer.
 - Understand what is important.

Problem Solving Approach

- Understand.
- 2. Think.
- 3. Plan.
- 4. Execute.
- 5. Verify.

Understand

- The first step toward solving the problem is understand it or to *identify the problem*.
- During students' education, the instructor is usually the one that identifies a particular problem for the students to solve.
- During work, this problem can be identified by the manager, the engineer himself, or another department.
- Example: Although Nokia has the largest share of the mobile phone market, they are losing in the smart phone battle to Blackberry.

Think

 Once the problem has been identified, engineers need to take some time to think about the problem thoroughly.

- This is referred to as *Synthesis*.
- *Synthesis* is creative step in which parts are integrated together to form a whole.

Plan

- Once the problem has been studied, a plan needs to be devised.
- This is done by dissecting the whole problem into pieces.
- This step is referred to as Analysis.
- Analysis involves the use of logic to make correct decisions and identify relationship among the parts.
- A key aspect of this step is the use of mathematical models.
- Most of the engineering education focuses on this step.

Execute

- Now that the problem has been studied and analyzed, the plan needs to be executed and solutions need to be developed.
- This is referred to the *Application* of the solution.
- Application is the process were appropriate information is identified for the problem in order to solve it.

Verify

• Finally, engineers must check their work and understand all issues involved.

• *Comprehension* is the key here where the proper theory and data is used to solve the problem.

Conclusions

- Skilled problem solvers excel in their approach, knowledge, attack, analysis, and perspective.
- Problem solving approach involves understanding, thinking, planning, executing, and checking.